Internal Resistance MS

M1. (a) (i) (use of V = IR)

$$R_{total} = 1 \text{ (ohm) } \checkmark$$

$$V = 1 \times 1 = 1.0 \text{ V} \checkmark$$

(ii) (use of V = IR)

$$R = 9.0/1.0 = 9.0 \Omega$$

$$r = 9.0 - 1.0 - 6.0 = 2.0 \Omega$$

or use of
$$(E = I(R + r))$$

$$9.0 = 1(7 + r)$$

$$r = 9.0 - 7.0 = 2.0 \Omega$$

(iii) (use of W = VIt)

$$W = 9.0 \times 1.0 \times 5 \times 60 \checkmark$$

$$W = 2700 \text{ J} \checkmark$$

(iv) energy dissipated in internal resistance = $1^2 \times 2.0 \times 5 \times 60 = 600$ (J) \checkmark percentage = $100 \times 600/2700 = 22\%$ \checkmark CE from part aii

- (b) internal resistance limits current ✓
 - hence can provide higher current \checkmark
 - or energy wasted in internal resistance/battery ✓

less energy wasted (with lower internal resistance) 🗸

or charges quicker ✓

as current higher or less energy wasted ✓

or (lower internal resistance) means higher terminal pd/voltage ✓

as less pd across internal resistance or mention of lost volts 🗸

[10]

2

2

2

2

- (a) (i) energy changed to electrical energy per unit charge/coulomb passing through
 [or electrical energy produced per coulomb or unit charge]
 [or pd when no current passes through/or open circuit] (1)
 - (ii) $I = \frac{6}{2.4} = 2.5 \text{ A}$ (1)
 - (iii) (use of $\in = I(R + r)$ gives) $\in = V + Ir$ and 8 = 6 + Ir (1) substitution gives 8 6 = 2.5r (1) (and $r = 0.8 \Omega$)
 - (b) (i) (use of P = fR gives) $P_R = 2.5^2 \times 2.4 = 15$ W [or P = VI gives $P = 6 \times 2.5 = 15$ W] (1) (allow C.E. for value of I from (a))
 - (ii) $P_{T} = 15 + (2.5^{2} \times 0.8)$ (1) = 20 (W) (1) (allow C.E. for values of P_{R} and I)
 - (iii) $E = 5 \times 2 \times 60 = 600 \text{ J}$ (allow C.E. for value of P from (i) and $P_{\scriptscriptstyle T}$ from (ii))

[8]

M3. (i) (V = IR gives) 12 = (30 + 30 + 2)I (1)

$$I = \left(\frac{12}{62}\right) = 0.19 \text{ A}$$
 (0.194 A)

(ii)
$$V_{PQ} = 12 - (0.19 \times 2)$$
 (1) = 11.6 V (1)

(allow C.E. for incorrect / in (i))

[or
$$V_{po} = 0.19 \times 60 = 11.6 \text{ V}$$
] ($I = 0.194 \text{ A gives } 11.6 \text{ V}$)

[or
$$V_{PQ} = 12 \times \frac{60}{62} = 11.6 \text{ V}$$

(iii) $(P_A = PR \text{ gives}) P_A = (0.19)^2 \times 30 = 1.08 \text{ (1)} \text{ W (1)}$

$$[or P_A = \frac{V^2}{R}]$$

(allow C.E. for incorrect I in (i) or incorrect V in (ii))

(iv)
$$(E = P_{A}t \text{ gives}) E = 1.08 \times 20$$
 (1)

$$= 21.6 J (1)$$

(allow C.E. for incorrect $P_{_{\rm A}}$ in (iii))

[8]

- (a) (i) work (done)/energy (supplied) per unit charge (by battery) (1)(or pd across terminals when no current passing through cell or open circuit)
 - (ii) when switch is closed a **current flows** (through the battery) **(1)**hence a pd/lost volts develops across the internal resistance **(1)**

(b) (use of
$$\varepsilon = V + Ir$$
)
$$I = 5.8/10 = 0.58 \text{ (A) (1)}$$

$$6.0 = 5.8 + 0.58r \text{ (1)}$$

$$r = 0.2/0.58 = 0.34 \text{ (}\Omega\text{) (1)}$$

3

1

(c) need large current/power to start the car (1) (or current too low)

internal resistance limits the current/wastes power(or energy)/reduces terminal pd/increases lost volts (1)

[8]

M5. (a) (use of E = V + Ir)

$$12 = V + 420 \times 0.0095$$
 (1)

$$V = 8.0(1)V$$
 (1)

2

3

2

(b) $\rho = RA/I = 1.6 \times 10^{-3} \times 7.9 \times 10^{-5}/0.75$ (1)

$$R = 1.7 \times 10^{-7}$$
 (1) Ω m (1)

[5]

- **M6.** (a) (i) work done (by the battery) per unit charge **(1) or** (electrical) energy per unit charge
 - **or** pd/voltage when open circuit/no current
 - the resistance of the materials within the battery (1)
 or hindrance to flow of charge in battery
 or loss of pd/voltage per unit current

2

(b) (i) (use of E = V + Ir)

$$12 = V + 800 \times 0.005$$
 (1) (working/equation needs to be shown)

$$V = 12 - 4 = 8.0 V$$
 (1)

(ii) (use of P = fr)

 $P = 800^2 \times 0.005$ (1) (working/equation needs to be shown)

$$P = 3200$$
 (1) W (1) or J s⁻¹

(c) car will probably not start (1)

battery will not be able to provide enough current (1)
or less current
or lower terminal pd/voltage

[9]

M7. (a) mention of pd across internal resistance **or** energy loss in internal resistance **or** emf > V ✓

pd across internal resistance/lost volts increases with current **or** correct use of equation to demonstrate **v**

2

2

(b) (i) $y - intercept 1.52 \text{ V } (\pm 0.01 \text{ V}) \checkmark$

1

(ii) identifies gradient as r or use of equation \checkmark substitution to find gradient or substitution in equation \checkmark $r = 0.45 \pm 0.02 \ \Omega \ \checkmark$

3

(c) (i) same intercept ✓

double gradient (must go through 1.25, 0.40 ± 1.5 squares) ✓

2

(ii) same intercept horizontal line 🗸

1

(d) (i) (use of Q = It) $Q = 0.89 \times 15 = 13 \checkmark C \checkmark$

2

2

(ii) use of $P = fr \checkmark$

 $P = 0.89^2 \times 0.45$

 $P = 0.36 \text{ W} \checkmark$

[13]

M8. (a) battery has internal resistance (1)
 current passes through (this resistance) (1)
 work done/voltage lost, which reduces the value of the emf (1)

3 QWC 1 (b) (i) circuit diagram to show: two **cells** in series **(1)** two resistors, each labelled r **(1)**(ii) (use of P = IV gives) 1.6 = 2.5 I **(1)** (I = 0.64 (A)) (use of E = V + Ir gives) 1.6 = 2.5 I **(1)** (I = 0.64 (A)) I = 0.5 = 1.28 r and $I = 0.39 \Omega$ **(1)** [or I = 0.64 I] I = 0.64 I [or I = 0.64 I] I = 0.64 I [or I = 0.64 I] I = 0.64 I [or I = 0.64 I] I = 0.64 I] I = 0.64 I [or I = 0.64 I] I = 0.64 I] I = 0.64 I [or I = 0.64 I] I = 0.64 I] I = 0.64 I [or I = 0.64 I] I = 0.64 I] I = 0.64 I [or I = 0.64 I] I = 0.6

0.25 = 0.64r and $r = 0.39 \Omega$

(c) $\in V + Ir$ gives $V = -Ir + \in$ (equation of straight line) (1) intercept on *y*-axis gives \in (1) gradient gives (-)*r* (1)

'lost volts' = (3 - 2.5) = 0.5 (V) i.e. 0.25 (V) per cell

5

3

1

2

2

1

1

2

2

[11]

[5]

- **M9.** (a) $V = -lr + \in (1)$
 - (b) straight line (within 1st quadrant) (1) negative gradient (1)
 - (c) ∈ : intercept on voltage axis (1)r. gradient (1)

- **M10.** (a) (i) $6.0 (\Omega)$ (1)
 - (ii) 4.5 (V) **(1)**
 - (iii) (use of I = V/R) I = 4.5/6.0 = 0.75 (A) (1) current through cell A = 0.75/2 = 0.375 (A) (1)
 - (iv) charge = $0.375 \times 300 = 112$ (1) C (1)

- (b) cells C and D will go flat first or A and B last longer (1)
 - current/charge passing through cells C and D (per second) is double/more than that passing through A or B (1)

energy given to charge passing through cells **per second** is double or more than in cells C and D (1) or in terms of power

[9]

3

- M11. (a) (i) electrical energy produced (in the battery) per unit charge (1)[or potential/voltage across terminals when there is no current]
 - (ii) there is a current (through the battery) (1)voltage 'lost' across the internal resistance (1)

Max 2

- (b) (i) $\in V + Ir(1)$
 - (ii) labelled scales (1)
 correct plotting (1)
 best straight line (1)
 ∈: intercept on y axis (1) = 9.2 (± 0.1) V (1)

$$r$$
: (-) gradient = $\frac{9.2}{0.65}$ = 14.2 Ω (1) (range 14.0 to 14.3)

[10]